
TESTES UNITÁRIOS DE SOFTWARE COM APOIO DE LARGE LANGUAGE MODELS

Instituição: Universidade Estadual de Mato Grosso do Sul.

Área temática: Ciência da Computação.

SOUZA, Igor Roberto Michalski de1 (rgm47539@comp.uems.br); RECALCATTI, João Pedro2

(rgm49117@comp.uems.br); PRATES, Jorge Marques3 (jprates@uems.br).

1 – Discente do Curso de Ciência da Computação, UEMS;
2 – Discente do Curso de Sistemas de Informação, UEMS;
3 – Docente do Curso de Sistemas de Informação, UEMS.

A geração de testes de software é uma atividade essencial para garantir a qualidade e a confiabilidade dos sistemas,
porém, o processo manual é demorado e propenso a falhas. A ascensão dos Modelos de Linguagem de Grande Escala
(LLMs) oferece uma abordagem promissora para automatizar e aprimorar esta tarefa, gerando economia de recursos ao
identificar defeitos no início do desenvolvimento. O objetivo principal deste projeto foi comparar quantitativamente a
eficácia da ferramenta tradicional Pynguin com três LLMs modernos, GPT-4o, Gemini 2.5 Pro e DeepSeek, na geração
de testes unitários para funções em Python. Como objetivos secundários, buscou-se medir a capacidade de cada
abordagem em alcançar alta cobertura de ramos, avaliar a eficácia na detecção de falhas por meio de testes de mutação e
analisar o impacto de diferentes estratégias de engenharia de prompt. As três estratégias de prompt testadas foram: uma
abordagem básica (zero-shot simples), uma detalhada (zero-shot com contexto e requisitos) e uma com exemplos (few-
shot), para avaliar como a sofisticação da instrução afeta a qualidade do teste gerado. A metodologia consistiu em um
experimento controlado e repetível, utilizando um conjunto diversificado de sete funções-alvo. A seleção buscou variar
a complexidade e o domínio de aplicação, incluindo um algoritmo clássico (Crivo de Eratóstenes) e funções realistas
que abrangem validação de dados, manipulação de strings e lógica financeira, garantindo que os resultados fossem
verificáveis e que os testes operassem sobre tipos de dados padrão do Python. A qualidade das suítes de teste foi
avaliada por um conjunto abrangente de métricas, incluindo a cobertura de ramos, o volume de testes gerados e a
natureza dos mesmos (como o uso de falhas esperadas, ou xfail). A métrica central, no entanto, foi a pontuação de
mutação, obtida com a ferramenta Cosmic Ray, para medir a capacidade real de detecção de falhas. Os resultados
revelaram uma narrativa clara e consistente. Embora a ferramenta tradicional e os LLMs tenham alcançado uma
cobertura de ramos similarmente alta e quase perfeita, com médias superiores a 98%, a capacidade de detecção de
falhas apresentou uma grande disparidade. A pontuação de mutação média do Pynguin foi de apenas 38,0%, enquanto
os LLMs, em média, superaram 86%, demonstrando uma eficácia drasticamente superior. Essa diferença origina-se de
uma divergência fundamental de abordagem: o método puramente estrutural do Pynguin, que otimiza para a cobertura,
contrasta com a capacidade dos LLMs de inferir a semântica e a intenção do código. Os LLMs demonstraram maior
aptidão para gerar asserções que validam a lógica de negócio e o "caminho feliz" do código, não apenas seus caminhos
de erro. A formulação dos prompts também se mostrou um fator crítico, com estratégias mais elaboradas geralmente
produzindo testes mais robustos, embora a tendência não seja estritamente linear, variando conforme o modelo e a
função. Conclui-se que os LLMs não apenas automatizam, mas evoluem a geração de testes de uma otimização
estrutural para uma validação semântica, demonstrando maior eficácia na criação de testes que refletem a lógica de
negócio.

PALAVRAS-CHAVE: Engenharia de Software, Teste de Software, Modelos de Linguagem de Grande Escala.

AGRADECIMENTOS: Agradecemos à Universidade Estadual de Mato Grosso do Sul (UEMS) pelo apoio
institucional ao desenvolvimento deste projeto de pesquisa.

mailto:rgm47539@comp.uems.br

