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A geração de testes de software é uma atividade essencial para garantir a qualidade e a confiabilidade dos sistemas,
porém, o processo manual é demorado e propenso a falhas. A ascensão dos Modelos de Linguagem de Grande Escala
(LLMs) oferece uma abordagem promissora para automatizar e aprimorar esta tarefa, gerando economia de recursos ao
identificar defeitos no início do desenvolvimento. O objetivo principal deste projeto foi comparar quantitativamente a
eficácia da ferramenta tradicional Pynguin com três LLMs modernos, GPT-4o, Gemini 2.5 Pro e DeepSeek, na geração
de  testes  unitários  para  funções  em Python.  Como objetivos  secundários,  buscou-se  medir  a  capacidade  de  cada
abordagem em alcançar alta cobertura de ramos, avaliar a eficácia na detecção de falhas por meio de testes de mutação e
analisar o impacto de diferentes estratégias de engenharia de prompt. As três estratégias de prompt testadas foram: uma
abordagem básica (zero-shot simples), uma detalhada (zero-shot com contexto e requisitos) e uma com exemplos (few-
shot), para avaliar como a sofisticação da instrução afeta a qualidade do teste gerado. A metodologia consistiu em um
experimento controlado e repetível, utilizando um conjunto diversificado de sete funções-alvo. A seleção buscou variar
a complexidade e o domínio de aplicação, incluindo um algoritmo clássico (Crivo de Eratóstenes) e funções realistas
que abrangem validação de dados, manipulação de strings e lógica financeira,  garantindo que os resultados fossem
verificáveis  e que os testes operassem sobre tipos de dados padrão do Python. A qualidade das suítes de teste foi
avaliada por um conjunto abrangente de métricas,  incluindo a cobertura de ramos, o volume de testes gerados e a
natureza dos mesmos (como o uso de falhas esperadas, ou xfail). A métrica central, no entanto, foi a pontuação de
mutação,  obtida com a ferramenta Cosmic Ray, para medir a capacidade real  de detecção de falhas.  Os resultados
revelaram  uma narrativa  clara  e  consistente.  Embora  a  ferramenta  tradicional  e  os  LLMs tenham alcançado  uma
cobertura de ramos similarmente alta e quase perfeita,  com médias superiores a 98%, a capacidade de detecção de
falhas apresentou uma grande disparidade. A pontuação de mutação média do Pynguin foi de apenas 38,0%, enquanto
os LLMs, em média, superaram 86%, demonstrando uma eficácia drasticamente superior. Essa diferença origina-se de
uma divergência fundamental de abordagem: o método puramente estrutural do Pynguin, que otimiza para a cobertura,
contrasta com a capacidade dos LLMs de inferir a semântica e a intenção do código. Os LLMs demonstraram maior
aptidão para gerar asserções que validam a lógica de negócio e o "caminho feliz" do código, não apenas seus caminhos
de erro. A formulação dos prompts também se mostrou um fator crítico, com estratégias mais elaboradas geralmente
produzindo testes mais robustos, embora a tendência não seja estritamente linear, variando conforme o modelo e a
função.  Conclui-se  que  os  LLMs não  apenas  automatizam,  mas  evoluem a  geração  de  testes  de  uma otimização
estrutural para uma validação semântica, demonstrando maior eficácia na criação de testes que refletem a lógica de
negócio.
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